Using Large Monolingual and Bilingual Corpora to Improve Coordination Disambiguation

نویسندگان

  • Shane Bergsma
  • David Yarowsky
  • Kenneth Ward Church
چکیده

Resolving coordination ambiguity is a classic hard problem. This paper looks at coordination disambiguation in complex noun phrases (NPs). Parsers trained on the Penn Treebank are reporting impressive numbers these days, but they don’t do very well on this problem (79%). We explore systems trained using three types of corpora: (1) annotated (e.g. the Penn Treebank), (2) bitexts (e.g. Europarl), and (3) unannotated monolingual (e.g. Google N-grams). Size matters: (1) is a million words, (2) is potentially billions of words and (3) is potentially trillions of words. The unannotated monolingual data is helpful when the ambiguity can be resolved through associations among the lexical items. The bilingual data is helpful when the ambiguity can be resolved by the order of words in the translation. We train separate classifiers with monolingual and bilingual features and iteratively improve them via co-training. The co-trained classifier achieves close to 96% accuracy on Treebank data and makes 20% fewer errors than a supervised system trained with Treebank annotations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Monolingual and Bilingual Word-Sense Disambiguation of Medical Documents using UMLS

This paper describes techniques for unsupervised word sense disambiguation of English and German medical documents using UMLS. We present both monolingual techniques which rely only on the structure of UMLS, and bilingual techniques which also rely on the availability of parallel corpora. The best results are obtained using relations between terms given by UMLS, a method which achieves 74% prec...

متن کامل

Domain Adaptation for Statistical Machine Translation with Domain Dictionary and Monolingual Corpora

tra Statistical machine translation systems are usually trained on large amounts of bilingual text and monolingual text. In this paper, we propose a method to perform domain adaptation for statistical machine translation, where in-domain bilingual corpora do not exist. This method first uses out-of-domain corpora to train a baseline system and then uses in-domain translation dictionaries and in...

متن کامل

Synonymous Collocation Extraction Using Translation Information

Automatically acquiring synonymous collocation pairs such as and from corpora is a challenging task. For this task, we can, in general, have a large monolingual corpus and/or a very limited bilingual corpus. Methods that use monolingual corpora alone or use bilingual corpora alone are apparently inadequate because of low precision or low coverage. I...

متن کامل

Learning Crosslingual Word Embeddings without Bilingual Corpora

Crosslingual word embeddings represent lexical items from different languages in the same vector space, enabling transfer of NLP tools. However, previous attempts had expensive resource requirements, difficulty incorporating monolingual data or were unable to handle polysemy. We address these drawbacks in our method which takes advantage of a high coverage dictionary in an EM style training alg...

متن کامل

Word Sense Disambiguation Using Automatically Translated Sense Examples

We present an unsupervised approach to Word Sense Disambiguation (WSD). We automatically acquire English sense examples using an English-Chinese bilingual dictionary, Chinese monolingual corpora and Chinese-English machine translation software. We then train machine learning classifiers on these sense examples and test them on two gold standard English WSD datasets, one for binary and the other...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011